

Glühzünder

Grundwerte:

Parameter	Wert
Abmaße	60 x 8,0 x 2,5 mm
Beheizter Bereich	10 x 8,0 x 2,5 mm
T _{max}	1 000 °C

Details zu Standard, rechts:

Beschreibung

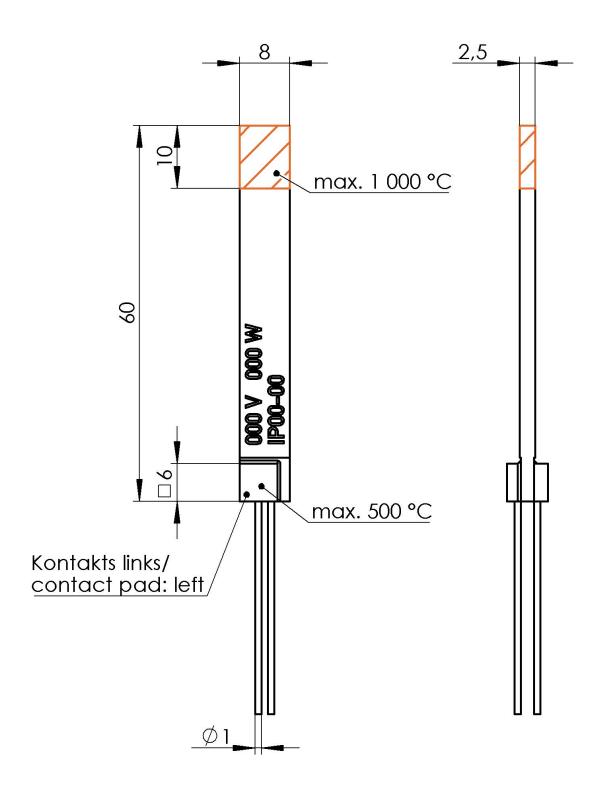
Die Glühzünder vom Typ IP (IPR/IPL) ermöglichen es, (Zünd)temperaturen von bis 1 000 °C mit einem sehr kompakt bauenden Heizelement mit 24 V Nennspannung zu erreichen. Die beiden verfügbaren Ausführungen IPR und IPL unterscheiden sich in der Orientierung der elektrischen Kontakte. Die kleinen Glühzünder lassen sich aber nicht nur als Zünder - beispielsweise von Holzpellets - verwenden, sondern können auch zur Kontaktbeheizung von verschiedenen Substraten sowie für die Zündung von Prozessgasen verwendet werden.

- Position des Kontakts rechts
- Oberfläche sinterroh
- * Die tatsächliche Leistung ist vom Widerstand, der Temperatur und der Spannung abhängig.

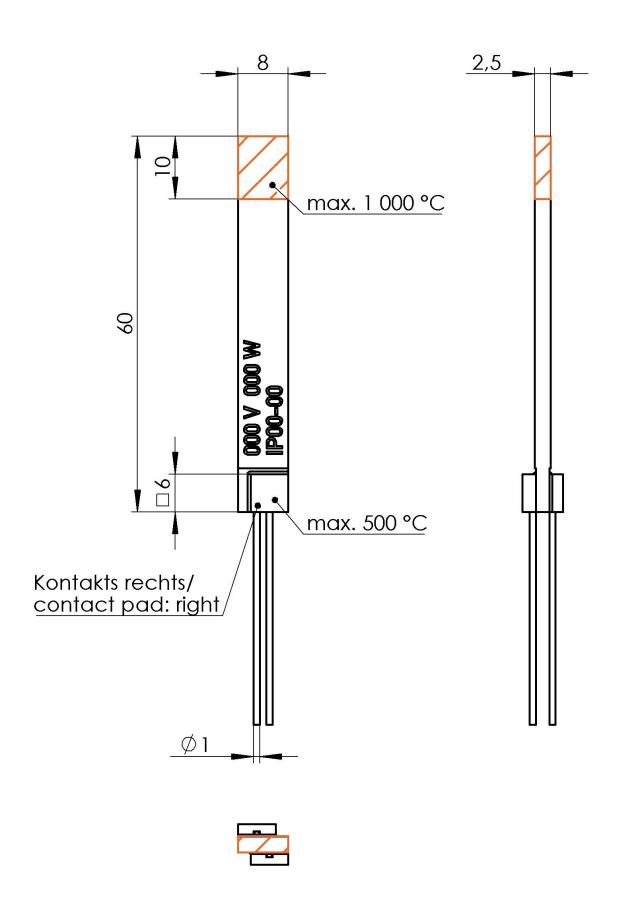
Parameter	Wert
Artikelnr.	GLZ 100 060
Widerstand @ 20 °C	4,8 Ω ±50 %
Nennspannung	24 V
Nennleistung @ 20 °C	120 W*

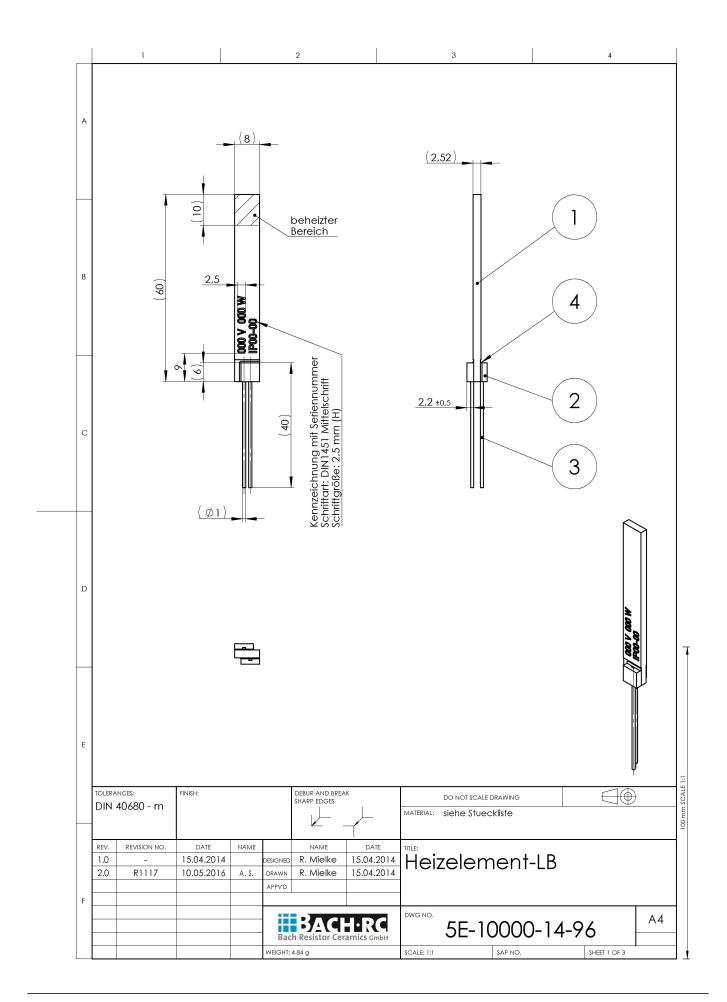
Basismaterial

Parameter	Einheit	Si ₃ N ₄
max. Temperatur (T _{max})	°C	1 000
Wärmeleitfähigkeit (I)	W/mK	40
Temperaturschockfestigkeit (ΔT)	K	500
Emissionsgrad (1 100 °C) (ϵ)	-	0,96
Elastizitätsmodul (E)	GPa	320
Biegebruchfestigkeit (δ_{BB})	MPa	400
Druckfestigkeit (δ_D)	MPa	2 000
Wärmeausdehnungskoeffizient (α)	10^{-6} K^{-1}	3
Dichte (g)	g/cm³	3,21
Spezifische Wärme (c _p)	J/kgK	750
Porosität (100 - % t.D.)	%	0
Kritischer Spannungsintensitätsfaktor (K _{Ic})	MPa m ^½	6
Weibull – Modul (m)	-	7,9


Die Thermoschockbeständigkeit ist abhängig von der Heizergeometrie.

Elektrische Eigenschaften


Parameter	Einheit	Si ₃ N ₄
spezifischer Widerstand	Ωcm	$5 \cdot 10^{-3} - 5 \cdot 10^{-1}$
Isolationswiderstand	Ω mm (20 °C)	10 ¹³
Durchschlagfestigkeit	kV/mm	25


Emissionsspektrum

Vollkeramische Heizelemente sind langwellige Infrarotstrahler mit einem Maximum der Emission bei 5 bis 10 μ m, Strahlungsfaktor ϵ > 0,9.

